Megapolis laboratory service: new approaches to managing the morbidity of the population during a pandemic based on methods of mass sequencing of the virus genome

  • Authors: Кучерявых Е.С.1, Панарина Я.С.1, Веневцев Е.О.1, Комаров А.Г.2, Аксенова Е.И.3, Романова В.А.4, Цибин А.Н.3, Слуцкий Е.А.2, Штинова И.А.2, Шпакова О.Г.2, Беляева А.С.2
  • Affiliations:
    1. Government of Moscow, Moscow, Russia
    2. Diagnostics center (Center of the laboratory testing), Moscow, Russia
    3. Research Institute for Healthcare Organization and Medical Management, Moscow, Russia
    4. The Department of Health of the City of Moscow, Moscow, Russia
  • Issue: No 1 (2024)
  • Pages: 31-38
  • Section: Articles
  • URL: https://remedium-journal.ru/journal/article/view/1692
  • DOI: https://doi.org/10.32687/1561-5936-2024-28-1-31-38
  • Cite item

Abstract


COVID-19 has become one of the most striking examples of infectious diseases that have caused a heavy burden on national health systems, which globally affected many factors of human life. The genomic sequence of RNA-containing viruses is constantly changing over time. Many new mutations in SARS-CoV-2 have been noted since its first detection in 2019. Sequencing makes it possible to identify the sequence of virus nucleotides, including new mutations. Rapid monitoring of the evolution of the virus and populations of circulating strains is a necessary step in understanding the biological properties of new virus variants and the dynamics of their transmission. Such information is important for public health services and the development of anti-epidemic measures that affect human well-being, life expectancy, and the country's economy. During the period of active spread of the new coronavirus infection in Moscow, the entire laboratory service was quickly transformed. It has become centralized, united by a digital circuit with a powerful analytical center and modern equipment. The article presents the evolution of the city's laboratory service during the pandemic, describes the key stages of development, describes the mechanisms for planning the burden on medical organizations, taking into account the dynamics of morbidity in the population of Moscow, algorithms for increasing the capacity of laboratory services, taking into account the external epidemiological situation.

About the authors

Екатерина Сергеевна Кучерявых

Government of Moscow, Moscow, Russia

Email: kucheryavyhes@mos.ru

Яна Сергеевна Панарина

Government of Moscow, Moscow, Russia

Email: panarinays@mos.ru

Евгений Олегович Веневцев

Government of Moscow, Moscow, Russia

Email: venevtseveo@mos.ru

Андрей Григорьевич Комаров

Diagnostics center (Center of the laboratory testing), Moscow, Russia

Email: komarovag@dcli.ru

Елена Ивановна Аксенова

Research Institute for Healthcare Organization and Medical Management, Moscow, Russia

Email: aksenovaei2@zdrav.mos.ru

Вероника Алексеевна Романова

The Department of Health of the City of Moscow, Moscow, Russia

Email: tsibinan@zdrav.mos.ru

Александр Николаевич Цибин

Research Institute for Healthcare Organization and Medical Management, Moscow, Russia

Email: slutskiyea@dcli.ru

Егор Анатольевич Слуцкий

Diagnostics center (Center of the laboratory testing), Moscow, Russia

Email: shtinovaia@dcli.ru

Ирина Александровна Штинова

Diagnostics center (Center of the laboratory testing), Moscow, Russia

Email: shpakovaog@dcli.ru

Ольга Геннадьевна Шпакова

Diagnostics center (Center of the laboratory testing), Moscow, Russia

Email: beliaevaas@dcli.ru

Анастасия Степановна Беляева

Diagnostics center (Center of the laboratory testing), Moscow, Russia

Email: 011

References

  1. Kaye A. D., Okeagu C. N., Pham A. D. et al. Economic impact of COVID-19 pandemic on healthcare facilities and systems: international perspectives. Best Pract. Res. Clin. Anaesthesiol. 2021;35(3):293—306. doi: 10.1016/j.bpa.2020.11.009
  2. Satiani B., Davis C. A. The financial and employment effects of coronavirus disease 2019 on physicians in the United States. J. Vasc. Surg. 2020;72(6):1856—1863. doi: 10.1016/j.jvs.2020.08.031
  3. Chang A. Y., Cullen M. R., Harrington R. A., Barry M. The impact of novel coronavirus COVID-19 on noncommunicable disease patients and health systems: a review. J. Intern. Med. 2021;289(4):450—462. doi: 10.1111/joim.13184
  4. Bell L., van Gemert C., Merilles O. E. Jr. et al. The impact of COVID-19 on public health systems in the Pacific Island Countries and Territories. Lancet Reg. Health West. Pac. 2022;25:100498. doi: 10.1016/j.lanwpc.2022.100498
  5. Abubaker Bagabir S., Ibrahim N. K., Abubaker Bagabir H., Hashem Ateeq R. COVID-19 and artificial intelligence: genome sequencing, drug development and vaccine discovery. J. Infect. Public Health. 2022;15(2):289—296. doi: 10.1016/j.jiph.2022.01.011
  6. Martin M. A., VanInsberghe D., Koelle K. Insights from SARS-CoV-2 sequences. Science. 2021;371(6528):466—467. doi: 10.1126/science.abf3995
  7. Beraud G., Bouetard L., Civljak R. et al. Impact of vaccination on the presence and severity of symptoms in hospitalized patients with an infection of the Omicron variant (B.1.1.529) of the SARS-CoV-2 (subvariant BA.1). Clin. Microbiol. Infect. 2023;29(5):642—650. doi: 10.1016/j.cmi.2022.12.020
  8. Arias A., Watson S. J., Asogun D. et al. Rapid outbreak sequencing of Ebola virus in Sierra Leone identifies transmission chains linked to sporadic cases. Virus Evol. 2016;2(1):vew016. doi: 10.1093/ve/vew016
  9. Quick J., Loman N. J., Duraffour S. et al. Real-time, portable genome sequencing for Ebola surveillance. Nature. 2016;530(7589):228—232. doi: 10.1038/nature16996
  10. Dudas G., Carvalho L. M., Bedford T. et al. Virus genomes reveal factors that spread and sustained the Ebola epidemic. Nature. 2017;544(7650):309—315. doi: 10.1038/nature22040
  11. Gardy J. L., Naus M., Amlani A. et al. Whole-genome sequencing of measles virus genotypes H1 and D8 during outbreaks of infection following the 2010 Olympic Winter Games reveals viral transmission routes. J. Infect. Dis. 2015;212(10):1574—1578. doi: 10.1093/infdis/jiv271
  12. MacFadden D. R., McGeer A., Athey T. et al. Use of genome sequencing to define institutional influenza outbreaks, Toronto, Ontario, Canada, 2014—15. Emerg. Infect. Dis. 2018;24(3):492.
  13. Tsibin A. N. Laboratory service of Moscow: under the sign of centralization. Moscow medicine. 2016;S1(12):33—36.
  14. Melkumyan A. R., Tsibin A. N. Microbiological service of Moscow: ways of optimization and model of reorganization. Laboratory service. 2018;7(S2):115—116.
  15. Latypova M. F., Tsibin A. N., Komarov A. G. et al. Organization of genomic surveillance for SARS-CoV-2 within the Moscow City Health Department. Problemi socialnoi gigieni, zdra-vookhranenia i istorii meditsini. 2022;(Special Issue):1061—1066. doi: 10.32687/0869-866X-2022-30-s1-1061-1066
  16. Gushchin V. A., Pochtovyi A. A., Kustova D. D. et al. Dynamics of SARS-CoV-2 major genetic lineages in Moscow in the context of vaccine prophylaxis. Int. J. Mol. Sci. 2022;23:14670. doi: 10.3390/ijms232314670
  17. Traspov A. A., Minashkin M. M., Poyarkov S. V. et al. The rs17713054 and rs1800629 polymorphisms of genes LZTFL1 and TNF are associated with COVID-19 severity. Bulletin of RSMU. 2022;(6):35—40. doi: 10.24075/brsmu.2022.065

Statistics

Views

Abstract - 7

PDF (Russian) - 5

Cited-By


PlumX

Dimensions


Copyright (c) 2024 АО "Шико"

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Mailing Address

Address: 105064, Moscow, st. Vorontsovo Pole, 12, building 1

Email: redactor@remedium-journal.ru

Phone: +7(495) 917-48-86



Principal Contact

Sherstneva Elena Vladimirovna
EXECUTIVE SECRETARY
FSSBI «N.A. Semashko National Research Institute of Public Health»

105064, Vorontsovo Pole st., 12, Moscow


Email: redactor@remedium-journal.ru

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies