Applications of some biodegradable polymers in medicine

Abstract


This paper presents an overview of the current state of research in the field of application of biodegradable polymers for medical purposes. The relevance of the research topic is noted, current trends in the development of biodegradable polymers, the creation of polymer protective coatings, polymers with a shape memory effect for medical products for various applications are described. A classification of modern polymers for medical purposes is presented, categories of biodegradable polymers are noted depending on the origin of raw materials, and the properties of biodegradable polymeric materials and composites are described. Biodegradable polymers are widely used for the controlled delivery of drugs and vaccines, the review notes the current developments in this area. Biodegradable polymers for drug encapsulation and delivery are presented, as well as the possibility of creating nanostructured polymers for pharmaceuticals. The prospects for the future development of the use of biodegradable polymers in medicine are analyzed and described.

About the authors

Iftikhar B. Abbasov

Engineering and Technology Academy of the Southern Federal University, Taganrog, Russia

Email: 001

References

  1. Gomzyak V. I., Demina V. A., Razuvaeva E. V. et al. Biodegradable polymer materials for medicine: from implant to organ. Fine Chemical Technologies. 2017; 12(5): 5—20. (In Russ.)
  2. Guo B., Ma P. X. Synthetic biodegradable functional polymers for tissue engineering: a brief review. Sci. China Chem. 2014; 57(4): 490—500. doi: 10.1007/s11426-014-5086-y
  3. Asghari M., Adibkia K., Akbarzadeh A., Davaran S. Biodegradable and biocompatible polymers for tissue engineering application: a review. Artif. Cells Nanomed. Biotechnol. 2017; 45(2): 185—192. doi: 10.3109/21691401.2016.1146731
  4. Garifullina L. I., Li N. I., Garipov R. M., Minnakhmetova A. K. Biodegradation of polymer film materials (review). Bulletin of the Technological University. 2019; 22(1): 47—53. (In Russ.)
  5. Yee D. T., Koon J. N., Huang Y. et al. Bioresorbable metals in cardiovascular stents: Material insights and progress. Materialia. 2020; 22: 100727. doi: 10.1016/j.mtla.2020.100727
  6. Kolybaba M., Tabil L. G., Panighari S. et al. Biodegradable polymers: past, present and future. Problems of the environment and natural resources. 2010; (1): 17—33. (In Russ.)
  7. Vildanov F.Sh., Latypova F. N., Krasutsky P. A., Chanyshev R. R. Biodegradable polymers — current state and prospects for use. Bashkir Chemical Journal. 2012; 19(1): 135—139. (In Russ.)
  8. Vasilyeva N. G. Biodegradable polymers. Bulletin of the Kazan Technological University. 2013; 16(22): 156—157. (In Russ.)
  9. Poddenezhny E. N., Boyko A. A., Alekseenko A. A. et al. Progress in obtaining biodegradable starch-based composite materials (review). Bulletin of the P. O. Sukhoi Gomel State Technical University. 2015; (2): 49—57. (In Russ.)
  10. Agadzhanyan V. V., Pronskikh A. A., Demina V. A. et al. Biodegradable implants in orthopedics and traumatology. Our first experience. Polytrauma. 2016; (4): 85—93. (In Russ.)
  11. Nesterenko T. S. Polymers and 3D printing in orthopedics. Collection of articles of the International scientific and practical conference «Intellectual and scientific potential of the XXI century». Ufa; 2017: 111—116. (In Russ.)
  12. Gainetdinova A. A., Krupnin A. E., Sorokin F. D. et al. Topological optimization of implant models for osteosynthesis of forearm bones based on biodegradable polymeric materials. Proceedings of the XXX International Innovation conference of young scientists and students (MIKMUS — 2018). Moscow; 2019: 378—382. (In Russ.)
  13. Kolpakova V. V., Usachev I. S., Solomin D. A. Biodegradable polymers: composite biocomponents and technological solutions for production. Food industry. 2019; (12): 51—57. (In Russ.) doi: 10.24411/0235-2486-2019-10197
  14. Sevostyanov M. A., Kaplan M. A., Nasakina E. O. et al. Development in the interests of medicine and agriculture of a biodegradable polymer based on high-molecular polylactide: mechanical properties and biocompatibility. Reports of the Russian Academy of Sciences. Chemistry, Materials Sciences. 2020; 490(1): 41—46. (In Russ.) doi: 10.31857/S2686953520010148
  15. Tastanbekov D. B., Tursynbekova M. M. Production of medical implants for osteosynthesis by injection molding of biodegradable polymers Chemical Journal of Kazakhstan. 2020; (2): 117—121. (In Russ.)
  16. Demina V. A., Sedush N. G., Goncharov E. N. et al. Biodegradable nanostructured composites for surgery and regenerative medicine. Russian Nanotechnologies. 2021; 16(1): 4—22. (In Russ.) doi: 10.1134/S1992722321010040
  17. Saberi A., Bakhsheshi-Rad H. R., Abazari S. et al. A comprehensive review on surface modifications of biodegradable magnesium-based implant alloy: polymer coatings opportunities and challenges. Coatings. 2021; 11: 747. doi: 10.3390/coatings11070747
  18. Sezer N., Evis Z., Koç M. Additive manufacturing of biodegradable magnesium implants and scaffolds: review of the recent advances and research trends. J. Magnes. Alloys. 2021; 9: 392—415. doi: 10.1016/j.jma.2020.09.014
  19. Mei D., Lamaka S. V., Lu X., Zheludkevich M. L. Selecting medium for corrosion testing of bioabsorbable magnesium and other metals — a critical review. Corros. Sci. 2020; 1: 108722. doi: 10.1016/j.corsci.2020.108722
  20. Radha R., Sreekanth D. Insight of magnesium alloys and composites for orthopedic implant applications — a review. J. Magnes. Alloys. 2017; 5: 286—312. doi: 10.1016/j.jma.2017.08.003
  21. Kirkland N. T., Birbilis N., Staiger M. P. Assessing the corrosion of biodegradable magnesium implants: a critical review of current methodologies and their limitations. Acta Biomater. 2012; 8: 925—936. doi: 10.1016/j.actbio.2011.11.014
  22. Kiselevsky М.V., Anisimova N. Yu., Polotsky B.Е. et al. Biodegradable magnesium alloys as promising materials for medical applications (review). Sovremennye Tehnologii v Meditsine. 2019; 11(3): 146—157. doi: 10.17691/stm2019.11.3.18
  23. Yu B., Dai J., Ruan Q. et al. Corrosion behavior and mechanism of carbon ion-implanted magnesium alloy. Coatings. 2020; 10: 734. doi: 10.3390/coatings10080734
  24. Zhang Y., Cao H., Huang H., Wang Z. Hydrophobic modification of magnesium hydroxide coating deposited cathodically on magnesium alloy and its corrosion protection. Coatings. 2019; 9: 477. doi: 10.3390/coatings9080477
  25. Lee Junsang, Kang Seung-Kyun. Principles for controlling the shape recovery and degradation behavior of biodegradable shape-memory polymers in biomedical. Micromachines. 2021; 12: 757. doi: 10.3390/mi12070757
  26. Lester B. T., Baxevanis T., Chemisky Y., Lagoudas D. C. Review and perspectives: Shape memory alloy composite systems. Acta Mech. 2015; 226: 3907—3960. doi: 10.1007/s00707-015-1433-0
  27. Peterson G. I., Dobrynin A. V., Becker M. L. Biodegradable Shape Memory Polymers in Medicine. Adv. Healthc. Mater. 2017; 6: 1700694. doi: 10.1002/adhm.201700694
  28. Patel K., Purohit R. Future prospects of shape memory polymer nano-composite and epoxy based shape memory polymer — a review. Mater. Today: Proc. 2018; 5: 20193—20200. doi: 10.1016/j.matpr.2018.06.389
  29. Xia Y., He Y., Zhang F. et al. A review of shape memory polymers and composites: mechanisms, materials, and applications. Adv. Mater. 2021; 33: 2000713. doi: 10.1002/adma.202000713
  30. Istratov V. V., Vasnev V. A., Markova G. D. Biodegradable and biocompatible silatrane polymers. Molecules. 2021; 26: 1893. doi: 10.3390/molecules26071893
  31. Puri J. K., Singh R., Chahal V. K. Silatranes: a review on their synthesis, structure, reactivity and applications. Chem. Soc. Rev. 2011; 40: 1791—1840. doi: 10.1039/B925899J
  32. Prajapati Sh.K., Jain A., Jain A., Jain S. Biodegradable polymers and constructs: a novel approach in drug delivery. Eur. Polym. J. 2019; 120: 109191. doi: 10.1016/j.eurpolymj.2019.08.018
  33. Joseph B., George A., Gopi S. et al. Polymer sutures for simultaneous wound healing and drug delivery — a review. Int. J. Pharm. 2017; 524(1—2): 454—466. doi: 10.1016/j.ijpharm.2017.03.041
  34. Kluin O. S., van der Mei H. C., Busscher H. J., Neut D. Biodegradable vs. non-biodegradable antibiotic delivery devices in the treatment of osteomyelitis. Expert Opin. Drug Deliv. 2013; 10: 341—351. doi: 10.1517/17425247.2013.751371
  35. Karamanlioglu M., Preziosi R., Robson G. D. Abiotic and biotic environmental degradation of the bioplastic polymer poly (lactic acid): a review. Polym. Degrad. Stab. 2017; 137: 122—130. doi: 10.1016/j.polymdegradstab.2017.01.009
  36. Idrees H., Zaidi S. Z., Sabir A. et al. A review of biodegradable natural polymer-based nanoparticles for drug delivery applications. Nanomaterials. 2020; 10: 1970. doi: 10.3390/nano10101970
  37. García M. C. Drug delivery systems based on nonimmunogenic biopolymers. Engineering of Biomaterials for Drug Delivery Systems. Elsevier; 2018: 317—344. doi: 10.1016/B978-0-08-101750-0.00012-X
  38. Jordansky A. L., Zaikov G. E., Berlin A. A. Diffusion kinetics and hydrolysis of biodegradable polymers. Weight loss and control of the release of low molecular weight substances. Bulletin of the Technological University. 2015; 18(2): 81—87. (In Russ.)
  39. Mamuchieva M. B., Kompantsev D. V., Sagradyan G. V. Modern aspects of the use of nanomaterials in balneology and medicine (literature review). Scientific statements of the Belgorod State University. Series: Medicine. Pharmacy. 2017; (19): 20—28. (In Russ.)
  40. Shafabakhsh R., Yousefi B., Asemi Z. et al. Chitosan: A compound for drug delivery system in gastric cancer — a review. Carbohydr. Polym. 2020; 242: 116403. doi: 10.1016/j.carbpol.2020.116403
  41. George M., Abraham T. E. Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan — a review. J. Control. Release. 2006; 114(1): 1—14. doi: 10.1016/j.jconrel.2006.04.017
  42. Tonnesen H. H., Karlsen J. Alginate in drug delivery systems. Drug Dev. Ind. Pharm. 2002; 28: 621—630. doi: 10.1081/DDC-120003853
  43. Yang J.-S., Xie Y.-J., He W. Research progress on chemical modification of alginate: a review. Carbohydr. Polym. 2011; 84: 33—39. doi: 10.1016/j.carbpol.2010.11.048
  44. Rahimnejad M., Jahanshahi M., Najafpour G. D. Production of biological nanoparticles from bovine serum albumin for drug delivery. Afr. J. Biotechnol. 2006; 5: 1918—1923.
  45. Joshi M., M. Nagarsenkar, B. Prabhakar Albumin nano-carriers for pulmonary drug delivery: an attractive approach. J. Drug Deliv. Sci. Technol. 2020; 56: 101529. doi: 10.1016/j.jddst.2020.101529
  46. Patil G. V. Biopolymer albumin for diagnosis and in drug delivery. Drug Dev. Res. 2003; 58: 219—247. doi: 10.1002/ddr.10157
  47. Arshady R. Preparation of microspheres and microcapsules by interfacial polycondensation techniques. J. Microcapsul. 1989; 6: 13—28. doi: 10.3109/02652048909019898
  48. Choi K. Y., K. H. Min, J. H. Na et al. Self-assembled hyaluronic acid nanoparticles as a potential drug carrier for cancer therapy: synthesis, characterization, and in vivo biodistribution. J. Mater. Chem. 2009; 19: 102—4107.
  49. Schanté C. E., Zuber G., Herlin C. Chemical modifications of hyaluronic acid for the synthesis of derivatives for a broad range of biomedical applications. Carbohydr. Polym. 2011; 85: 469—489. doi: 10.1016/j.carbpol.2011.03.019
  50. Cheng D., Han W., Yang K. et al. One-step facile synthesis of hyaluronic acid functionalized fluorescent gold nanoprobes sensitive to hyaluronidase in urine specimen from bladder cancer patients. Talanta. 2014; 130: 408—414. doi: 10.1016/j.talanta.2014.07.005
  51. Zhong W., Pang L., Feng H. et al. Recent advantage of hyaluronic acid for anticancer application: a review of “3S” transition approach. Carbohydr. Polym. 2020; 238: 116204. doi: 10.1016/j.carbpol.2020.116204
  52. Liu K., Wang Z. Q., Wang S. J. et al. Hyaluronic acidtagged silica nanoparticles in colon cancer therapy: therapeutic efficacy evaluation. Int. J. Nanomed. 2015; 10: 6445—6454.
  53. Wang H., Sun G., Zhang Z., Ou Y. Transcription activator, hyaluronic acid and tocopheryl succinate multi-functionalized novel lipid carriers encapsulating etoposide for lymphoma therapy. Biomed. Pharmacother. 2017; 91: 241—250. doi: 10.1016/j.biopharma.2017.04.104
  54. Sur S., Rathore A., Dave V. et al. Recent developments in functionalized polymer nanoparticles for efficient drug delivery system. Nano Struct. Nano Objects. 2019; 20: 100397. doi: 10.1016/j.nanoso.2019.100397
  55. George A., Shah P. A., Shrivastav P. S. Natural biodegradable polymers based nano-formulations for drug delivery: a review. Int. J. Pharm. 2019; 561: 244—264. doi: 10.1016/j.ijpharm.2019.03.011
  56. Gertsik Yu. G. Main trends of biomedicine and biopharmaceutical technologies development in bioeconomics. Remedium. 2022; (1): 50—57. (In Russ.) doi: 10.32687/1561-5936-2022-26-1-50-57

Statistics

Views

Abstract - 0

PDF (Russian) - 0

Cited-By


PlumX

Dimensions


Copyright (c) 2023 АО "Шико"

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Mailing Address

Address: 105064, Moscow, st. Vorontsovo Pole, 12, building 1

Email: redactor@remedium-journal.ru

Phone: +7(495) 917-48-86



Principal Contact

Sherstneva Elena Vladimirovna
EXECUTIVE SECRETARY
FSSBI «N.A. Semashko National Research Institute of Public Health»

105064, Vorontsovo Pole st., 12, Moscow


Email: redactor@remedium-journal.ru

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies