Applications of some biodegradable polymers in medicine
- Authors: Abbasov I.B.1
- Affiliations:
- Engineering and Technology Academy of the Southern Federal University, Taganrog, Russia
- Issue: No 1 (2023)
- Pages: 17-25
- Section: Articles
- URL: https://remedium-journal.ru/journal/article/view/1589
- DOI: https://doi.org/10.32687/1561-5936-2023-27-1-17-25
- Cite item
Abstract
This paper presents an overview of the current state of research in the field of application of biodegradable polymers for medical purposes. The relevance of the research topic is noted, current trends in the development of biodegradable polymers, the creation of polymer protective coatings, polymers with a shape memory effect for medical products for various applications are described. A classification of modern polymers for medical purposes is presented, categories of biodegradable polymers are noted depending on the origin of raw materials, and the properties of biodegradable polymeric materials and composites are described. Biodegradable polymers are widely used for the controlled delivery of drugs and vaccines, the review notes the current developments in this area. Biodegradable polymers for drug encapsulation and delivery are presented, as well as the possibility of creating nanostructured polymers for pharmaceuticals. The prospects for the future development of the use of biodegradable polymers in medicine are analyzed and described.
About the authors
Iftikhar B. Abbasov
Engineering and Technology Academy of the Southern Federal University, Taganrog, Russia
Email: 001
References
- Gomzyak V. I., Demina V. A., Razuvaeva E. V. et al. Biodegradable polymer materials for medicine: from implant to organ. Fine Chemical Technologies. 2017; 12(5): 5—20. (In Russ.)
- Guo B., Ma P. X. Synthetic biodegradable functional polymers for tissue engineering: a brief review. Sci. China Chem. 2014; 57(4): 490—500. doi: 10.1007/s11426-014-5086-y
- Asghari M., Adibkia K., Akbarzadeh A., Davaran S. Biodegradable and biocompatible polymers for tissue engineering application: a review. Artif. Cells Nanomed. Biotechnol. 2017; 45(2): 185—192. doi: 10.3109/21691401.2016.1146731
- Garifullina L. I., Li N. I., Garipov R. M., Minnakhmetova A. K. Biodegradation of polymer film materials (review). Bulletin of the Technological University. 2019; 22(1): 47—53. (In Russ.)
- Yee D. T., Koon J. N., Huang Y. et al. Bioresorbable metals in cardiovascular stents: Material insights and progress. Materialia. 2020; 22: 100727. doi: 10.1016/j.mtla.2020.100727
- Kolybaba M., Tabil L. G., Panighari S. et al. Biodegradable polymers: past, present and future. Problems of the environment and natural resources. 2010; (1): 17—33. (In Russ.)
- Vildanov F.Sh., Latypova F. N., Krasutsky P. A., Chanyshev R. R. Biodegradable polymers — current state and prospects for use. Bashkir Chemical Journal. 2012; 19(1): 135—139. (In Russ.)
- Vasilyeva N. G. Biodegradable polymers. Bulletin of the Kazan Technological University. 2013; 16(22): 156—157. (In Russ.)
- Poddenezhny E. N., Boyko A. A., Alekseenko A. A. et al. Progress in obtaining biodegradable starch-based composite materials (review). Bulletin of the P. O. Sukhoi Gomel State Technical University. 2015; (2): 49—57. (In Russ.)
- Agadzhanyan V. V., Pronskikh A. A., Demina V. A. et al. Biodegradable implants in orthopedics and traumatology. Our first experience. Polytrauma. 2016; (4): 85—93. (In Russ.)
- Nesterenko T. S. Polymers and 3D printing in orthopedics. Collection of articles of the International scientific and practical conference «Intellectual and scientific potential of the XXI century». Ufa; 2017: 111—116. (In Russ.)
- Gainetdinova A. A., Krupnin A. E., Sorokin F. D. et al. Topological optimization of implant models for osteosynthesis of forearm bones based on biodegradable polymeric materials. Proceedings of the XXX International Innovation conference of young scientists and students (MIKMUS — 2018). Moscow; 2019: 378—382. (In Russ.)
- Kolpakova V. V., Usachev I. S., Solomin D. A. Biodegradable polymers: composite biocomponents and technological solutions for production. Food industry. 2019; (12): 51—57. (In Russ.) doi: 10.24411/0235-2486-2019-10197
- Sevostyanov M. A., Kaplan M. A., Nasakina E. O. et al. Development in the interests of medicine and agriculture of a biodegradable polymer based on high-molecular polylactide: mechanical properties and biocompatibility. Reports of the Russian Academy of Sciences. Chemistry, Materials Sciences. 2020; 490(1): 41—46. (In Russ.) doi: 10.31857/S2686953520010148
- Tastanbekov D. B., Tursynbekova M. M. Production of medical implants for osteosynthesis by injection molding of biodegradable polymers Chemical Journal of Kazakhstan. 2020; (2): 117—121. (In Russ.)
- Demina V. A., Sedush N. G., Goncharov E. N. et al. Biodegradable nanostructured composites for surgery and regenerative medicine. Russian Nanotechnologies. 2021; 16(1): 4—22. (In Russ.) doi: 10.1134/S1992722321010040
- Saberi A., Bakhsheshi-Rad H. R., Abazari S. et al. A comprehensive review on surface modifications of biodegradable magnesium-based implant alloy: polymer coatings opportunities and challenges. Coatings. 2021; 11: 747. doi: 10.3390/coatings11070747
- Sezer N., Evis Z., Koç M. Additive manufacturing of biodegradable magnesium implants and scaffolds: review of the recent advances and research trends. J. Magnes. Alloys. 2021; 9: 392—415. doi: 10.1016/j.jma.2020.09.014
- Mei D., Lamaka S. V., Lu X., Zheludkevich M. L. Selecting medium for corrosion testing of bioabsorbable magnesium and other metals — a critical review. Corros. Sci. 2020; 1: 108722. doi: 10.1016/j.corsci.2020.108722
- Radha R., Sreekanth D. Insight of magnesium alloys and composites for orthopedic implant applications — a review. J. Magnes. Alloys. 2017; 5: 286—312. doi: 10.1016/j.jma.2017.08.003
- Kirkland N. T., Birbilis N., Staiger M. P. Assessing the corrosion of biodegradable magnesium implants: a critical review of current methodologies and their limitations. Acta Biomater. 2012; 8: 925—936. doi: 10.1016/j.actbio.2011.11.014
- Kiselevsky М.V., Anisimova N. Yu., Polotsky B.Е. et al. Biodegradable magnesium alloys as promising materials for medical applications (review). Sovremennye Tehnologii v Meditsine. 2019; 11(3): 146—157. doi: 10.17691/stm2019.11.3.18
- Yu B., Dai J., Ruan Q. et al. Corrosion behavior and mechanism of carbon ion-implanted magnesium alloy. Coatings. 2020; 10: 734. doi: 10.3390/coatings10080734
- Zhang Y., Cao H., Huang H., Wang Z. Hydrophobic modification of magnesium hydroxide coating deposited cathodically on magnesium alloy and its corrosion protection. Coatings. 2019; 9: 477. doi: 10.3390/coatings9080477
- Lee Junsang, Kang Seung-Kyun. Principles for controlling the shape recovery and degradation behavior of biodegradable shape-memory polymers in biomedical. Micromachines. 2021; 12: 757. doi: 10.3390/mi12070757
- Lester B. T., Baxevanis T., Chemisky Y., Lagoudas D. C. Review and perspectives: Shape memory alloy composite systems. Acta Mech. 2015; 226: 3907—3960. doi: 10.1007/s00707-015-1433-0
- Peterson G. I., Dobrynin A. V., Becker M. L. Biodegradable Shape Memory Polymers in Medicine. Adv. Healthc. Mater. 2017; 6: 1700694. doi: 10.1002/adhm.201700694
- Patel K., Purohit R. Future prospects of shape memory polymer nano-composite and epoxy based shape memory polymer — a review. Mater. Today: Proc. 2018; 5: 20193—20200. doi: 10.1016/j.matpr.2018.06.389
- Xia Y., He Y., Zhang F. et al. A review of shape memory polymers and composites: mechanisms, materials, and applications. Adv. Mater. 2021; 33: 2000713. doi: 10.1002/adma.202000713
- Istratov V. V., Vasnev V. A., Markova G. D. Biodegradable and biocompatible silatrane polymers. Molecules. 2021; 26: 1893. doi: 10.3390/molecules26071893
- Puri J. K., Singh R., Chahal V. K. Silatranes: a review on their synthesis, structure, reactivity and applications. Chem. Soc. Rev. 2011; 40: 1791—1840. doi: 10.1039/B925899J
- Prajapati Sh.K., Jain A., Jain A., Jain S. Biodegradable polymers and constructs: a novel approach in drug delivery. Eur. Polym. J. 2019; 120: 109191. doi: 10.1016/j.eurpolymj.2019.08.018
- Joseph B., George A., Gopi S. et al. Polymer sutures for simultaneous wound healing and drug delivery — a review. Int. J. Pharm. 2017; 524(1—2): 454—466. doi: 10.1016/j.ijpharm.2017.03.041
- Kluin O. S., van der Mei H. C., Busscher H. J., Neut D. Biodegradable vs. non-biodegradable antibiotic delivery devices in the treatment of osteomyelitis. Expert Opin. Drug Deliv. 2013; 10: 341—351. doi: 10.1517/17425247.2013.751371
- Karamanlioglu M., Preziosi R., Robson G. D. Abiotic and biotic environmental degradation of the bioplastic polymer poly (lactic acid): a review. Polym. Degrad. Stab. 2017; 137: 122—130. doi: 10.1016/j.polymdegradstab.2017.01.009
- Idrees H., Zaidi S. Z., Sabir A. et al. A review of biodegradable natural polymer-based nanoparticles for drug delivery applications. Nanomaterials. 2020; 10: 1970. doi: 10.3390/nano10101970
- García M. C. Drug delivery systems based on nonimmunogenic biopolymers. Engineering of Biomaterials for Drug Delivery Systems. Elsevier; 2018: 317—344. doi: 10.1016/B978-0-08-101750-0.00012-X
- Jordansky A. L., Zaikov G. E., Berlin A. A. Diffusion kinetics and hydrolysis of biodegradable polymers. Weight loss and control of the release of low molecular weight substances. Bulletin of the Technological University. 2015; 18(2): 81—87. (In Russ.)
- Mamuchieva M. B., Kompantsev D. V., Sagradyan G. V. Modern aspects of the use of nanomaterials in balneology and medicine (literature review). Scientific statements of the Belgorod State University. Series: Medicine. Pharmacy. 2017; (19): 20—28. (In Russ.)
- Shafabakhsh R., Yousefi B., Asemi Z. et al. Chitosan: A compound for drug delivery system in gastric cancer — a review. Carbohydr. Polym. 2020; 242: 116403. doi: 10.1016/j.carbpol.2020.116403
- George M., Abraham T. E. Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan — a review. J. Control. Release. 2006; 114(1): 1—14. doi: 10.1016/j.jconrel.2006.04.017
- Tonnesen H. H., Karlsen J. Alginate in drug delivery systems. Drug Dev. Ind. Pharm. 2002; 28: 621—630. doi: 10.1081/DDC-120003853
- Yang J.-S., Xie Y.-J., He W. Research progress on chemical modification of alginate: a review. Carbohydr. Polym. 2011; 84: 33—39. doi: 10.1016/j.carbpol.2010.11.048
- Rahimnejad M., Jahanshahi M., Najafpour G. D. Production of biological nanoparticles from bovine serum albumin for drug delivery. Afr. J. Biotechnol. 2006; 5: 1918—1923.
- Joshi M., M. Nagarsenkar, B. Prabhakar Albumin nano-carriers for pulmonary drug delivery: an attractive approach. J. Drug Deliv. Sci. Technol. 2020; 56: 101529. doi: 10.1016/j.jddst.2020.101529
- Patil G. V. Biopolymer albumin for diagnosis and in drug delivery. Drug Dev. Res. 2003; 58: 219—247. doi: 10.1002/ddr.10157
- Arshady R. Preparation of microspheres and microcapsules by interfacial polycondensation techniques. J. Microcapsul. 1989; 6: 13—28. doi: 10.3109/02652048909019898
- Choi K. Y., K. H. Min, J. H. Na et al. Self-assembled hyaluronic acid nanoparticles as a potential drug carrier for cancer therapy: synthesis, characterization, and in vivo biodistribution. J. Mater. Chem. 2009; 19: 102—4107.
- Schanté C. E., Zuber G., Herlin C. Chemical modifications of hyaluronic acid for the synthesis of derivatives for a broad range of biomedical applications. Carbohydr. Polym. 2011; 85: 469—489. doi: 10.1016/j.carbpol.2011.03.019
- Cheng D., Han W., Yang K. et al. One-step facile synthesis of hyaluronic acid functionalized fluorescent gold nanoprobes sensitive to hyaluronidase in urine specimen from bladder cancer patients. Talanta. 2014; 130: 408—414. doi: 10.1016/j.talanta.2014.07.005
- Zhong W., Pang L., Feng H. et al. Recent advantage of hyaluronic acid for anticancer application: a review of “3S” transition approach. Carbohydr. Polym. 2020; 238: 116204. doi: 10.1016/j.carbpol.2020.116204
- Liu K., Wang Z. Q., Wang S. J. et al. Hyaluronic acidtagged silica nanoparticles in colon cancer therapy: therapeutic efficacy evaluation. Int. J. Nanomed. 2015; 10: 6445—6454.
- Wang H., Sun G., Zhang Z., Ou Y. Transcription activator, hyaluronic acid and tocopheryl succinate multi-functionalized novel lipid carriers encapsulating etoposide for lymphoma therapy. Biomed. Pharmacother. 2017; 91: 241—250. doi: 10.1016/j.biopharma.2017.04.104
- Sur S., Rathore A., Dave V. et al. Recent developments in functionalized polymer nanoparticles for efficient drug delivery system. Nano Struct. Nano Objects. 2019; 20: 100397. doi: 10.1016/j.nanoso.2019.100397
- George A., Shah P. A., Shrivastav P. S. Natural biodegradable polymers based nano-formulations for drug delivery: a review. Int. J. Pharm. 2019; 561: 244—264. doi: 10.1016/j.ijpharm.2019.03.011
- Gertsik Yu. G. Main trends of biomedicine and biopharmaceutical technologies development in bioeconomics. Remedium. 2022; (1): 50—57. (In Russ.) doi: 10.32687/1561-5936-2022-26-1-50-57