Основные области и перспективы использования искусственного интеллекта и машинного обучения для ускорения разработки новых лекарственных средств

  • Авторы: Кошечкин К.А.1, Лаврентьева Л.И.2, Романов Ф.А.2, Яворский А.Н.3
  • Учреждения:
    1. Евразийская академия надлежащих практик, Москва, Россия
    2. Ярославский государственный медицинский университет Министерства здравоохранения Российской Федерации, г. Ярославль, Россия
    3. Ассоциация участников обращения лекарственных средств и изделий медицинского назначения «ЛЕКМЕДОБРАЩЕНИЕ», Москва, Россия
  • Выпуск: № 3 (2025)
  • Страницы: 213-220
  • Раздел: Статьи
  • URL: https://remedium-journal.ru/journal/article/view/1816
  • DOI: https://doi.org/10.32687/1561-5936-2025-29-3-213-220
  • Цитировать

Аннотация


Статья посвящена направлениям и перспективам использования искусственного интеллекта (ИИ) и машинного обучения (МО) в разработке новых лекарственных средств. Изложены инновационные подходы, которые кардинально трансформируют традиционные процессы поиска и создания лекарств. Представлены основные области применения ИИ/МО: идентификация и валидация биомишеней, молекулярный дизайн, прогнозирование свойств лекарственных соединений, автоматизация лабораторных процессов. Приведены технологические решения в данной сфере, такие как платформы Direct-to-Biology, CRISPR-технологии, высокопроизводительная визуализация, генеративные модели ИИ. Ключевыми преимуществами внедрения ИИ/МО являются ускорение разработки лекарств, снижение затрат, повышение точности прогнозирования, расширение возможностей молекулярного дизайна. Для реализации этого потенциала необходимо продолжать инвестиции в технологии и подготовку специалистов междисциплинарного профиля. Интеграция ИИ в исследования открывает новые перспективы для создания инновационных, персонализированных методов лечения.

Об авторах

Константин Александрович Кошечкин

Евразийская академия надлежащих практик, Москва, Россия

Email: k.koshechkin@lpt.digital

Лариса Ивановна Лаврентьева

Ярославский государственный медицинский университет Министерства здравоохранения Российской Федерации, г. Ярославль, Россия

Email: Lavl2004@mail.ru

Филипп Александрович Романов

Ярославский государственный медицинский университет Министерства здравоохранения Российской Федерации, г. Ярославль, Россия

Email: rfa2010@ya.ru

Александр Николаевич Яворский

Ассоциация участников обращения лекарственных средств и изделий медицинского назначения «ЛЕКМЕДОБРАЩЕНИЕ», Москва, Россия

Email: mail.ru

Список литературы

  1. Simonyan K., Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556. 2014.
  2. Drug Discovery — ELRIG [Electronic resource]. URL: https://elrig.org/portfolio/drug-discovery-2024/ (accessed: 02th January 2025).
  3. Sheikh M, Iqra F, Ambreen H, Pravin KA, Ikra M, Chung YS Integrating artificial intelligence and high-throughput phenotyping for crop improvement. J. Integr. Agric. 2024;(23):1787—1802.
  4. Fang S, Wei R, Cui Y, Su L. Advancing AI protein structure prediction and design: from amino acid “bones” to new era of all-atom “flesh”. Green Carbon. 2024;(2):209—210.
  5. Pioneering TechBio Solutions in Drug Discovery. Recursion [Electronic resource]. Available from: https://www.recursion.com/ (Аccessed: 02th January 2025).
  6. Stevens R, Bendito-Mol E, Battersby DJ, Miah AH, Wellaway N, Law RP at all. Integrated Direct-to-Biology Platform for the Nanoscale Synthesis and Biological Evaluation of PROTACs. Journal of medicinal chemistry. 2022;66(22):15437—15452. doi: 10.1021/acs.jmedchem.3c01604
  7. Abbasi AF, Asim MN, Dengel A. Transitioning from wet lab to artificial intelligence: a systematic review of AI predictors in CRISPR. J Transl Med. 2025;23(1):153. doi: 10.1186/s12967-024-06013-w
  8. Advancing Gene Editing with ePsCas9 Technology [Electronic resource]. Available from: https://www.astrazeneca.com/what-science-can-do/topics/clinical-innovation/advancing-gene-editing-with-epscas9-technology.html (Аccessed: 02th January 2025).
  9. Degtev D, Bravo J, Emmanouilidi A, Zdravković A, Choong O, Touza J et al. Engineered PsCas9 enables therapeutic genome editing in mouse liver with lipid nanoparticles. Nature Communications. 2024;15(1):1—15.
  10. On the CRISPR horizon: democratising access to genome-editing technologies. Available from: https://www.drugtargetreview.com/article/107337/on-the-crispr-horizon-democratising-access-to-genome-editing-technologies/ (Accessed: 02th January 2025).
  11. Constructive Bio. Available from: https://www.constructive.bio/. (Accessed: 02th January 2025).
  12. Chen L, Xin X, Zhang Y, Li S, Zhao X, Li S. et al. Advances in Biosynthesis of Non-Canonical Amino Acids (ncAAs) and the Methods of ncAAs Incorporation into Proteins. Molecules. 2023;28(18):6745.
  13. Chen Y, Jin S, Zhang M, Hu Y, Wu KL, Chung A. et al. Unleashing the potential of noncanonical amino acid biosynthesis to create cells with precision tyrosine sulfation. Nat Commun. 2022;(13):5434.
  14. Automating Discovery: Laboratory Automation, High Throughput Experimentation, Diagnostics and Laboratory Robotics/AI. Available from: https://eu-robotics.net/2024-09-fll-white-paper-launched-on-lab-robotics/ (accessed: 02th January 2025).
  15. Towards a research roadmap for laboratory robotics — 2024 — Wiley Analytical Science. Available from: https://analyticalscience.wiley.com/content/article-do/towards-research-roadmap-laboratory-robotics (accessed: 02th January 2025).
  16. Royall P. Using Robotics in Laboratories During the COVID-19 Outbreak: A Review. IEEE Robotics & Automation Magazine.
  17. 12641 PDFs | Review articles in LABORATORY AUTOMATION. Available from: https://www.researchgate.net/topic/Laboratory-Automation/publications (accessed: 02th January 2025).
  18. Li H, Li T, Quang D, Guan Y. Network Propagation Predicts Drug Synergy in Cancers. Cancer Res. 2018;78(18):5446—5457.
  19. Bestas B, Wimberger S, Degtev D, Madsen А, Rottner ФА., Karisson F. at al. A Type II-B Cas9 nuclease with minimized off-targets and reduced chromosomal translocations in vivo. Nat Commun. 2023;14(1):5474.
  20. Reimagining Drug Discovery Process with AI — Isomorphic Labs. Available from: https://www.isomorphiclabs.com/ (Аccessed: 02th January 2025).
  21. Roerden M, Castro AB, Cui Y, Harake N, Kim B, Dye J, Roerden M et al. Neoantigen architectures define immunogenicity and drive immune evasion of tumors with heterogenous neoantigen expression. J Immunother Cancer. 2024;12(11):e010249.
  22. Litchfield K, Augustine M, Nene N, Fu H, Pinder C, Ligamari L et al. Immunotherapy drug target identification using machine learning and patient-derived tumour explant validation. Biomedical Foundation Models — IBM Research [Internet]. 2024 Nov; Available from: https://research.ibm.com/projects/biomedical-foundation-models. doi: 10.21203/rs.3.rs-5499857/v1
  23. Biomedical Foundation Models — IBM Research [Electronic resource]. URL: https://research.ibm.com/projects/biomedical-foundation-models (accessed: 02.01.2025).
  24. United Kingdom — IBM Research. Available from: https://research.ibm.com/labs/uk (accessed: 02th January 2025).
  25. Aliper A, Plis S, Artemov A, Ulloa A, Mamoshina P, Zhavoronkov A. Deep Learning Applications for Predicting Pharmacological Properties of Drugs and Drug Repurposing Using Transcriptomic Data. Mol Pharm. 2016;13(7):2524—2530. doi: 10.1021/acs.molpharmaceut.6b00248
  26. Insilico Medicine. Available from: https://insilico.com/ (Accessed: 02th January 2025).
  27. Kamya P, Ozerov IV, Pun FW, et al. PandaOmics: An AI-Driven Platform for Therapeutic Target and Biomarker Discovery. J Chem Inf Model. 2024;64(10):3961—3969. doi: 10.1021/acs.jcim.3c01619
  28. Ivanenkov YA, Polykovskiy D, Bezrukov D, et al. Chemistry42: An AI-Driven Platform for Molecular Design and Optimization. J Chem Inf Model. 2023;63(3):695—701. doi: 10.1021/acs.jcim.2c01191
  29. Lu M, Yin J, Zhu Q, Lin G, Mou M, Liu F, et al. Artificial Intelligence in Pharmaceutical Sciences. Engineering [Internet]. 2023 Aug [cited 2024 Jul 4]; 27: 37—69. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2095809923001649.
  30. Levin JM, Oprea TI, Davidovich S, Clozel T, Overington J, Vanhaelen Q et al. Artificial intelligence, drug repurposing and peer review. Nat Biotechnol. 2020;38(10):1127—1131. doi: 10.1038/s41587-020-0686-x
  31. RXRX3: Phenomics Map of Biology. Available from: https://www.rxrx.ai/rxrx3 (Accessed: 02th January 2025).

Статистика

Просмотры

Аннотация - 17

PDF (Russian) - 6

Cited-By


PlumX

Dimensions


© АО "Шико", 2025

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Почтовый адрес

Адрес: 105064, г. Москва, ул. Воронцово Поле, д. 12, стр. 1

Email: redactor@remedium-journal.ru

Телефон: +7(495) 917-48-86

Редакция

Шерстнева Елена Владимировна
ОТВЕТСТВЕННЫЙ СЕКРЕТАРЬ
Национальный НИИ общественного здоровья имени Н.А. Семашко

105064, г. Москва, ул. Воронцово Поле, д. 12, стр. 1


E-mail: redactor@remedium-journal.ru

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах