Медицинские и фармацевтические кадры: проблемы и пути решения

Обзорная статья УДК 614; 331.4.

doi:10.32687/1561-5936-2025-29-3-314-320

Роль медицинской эргономики в улучшении деятельности медицинских работников и повышении качества оказания ими медицинской помощи населению за рубежом: обзор

Петр Степанович Турзин

Научно-исследовательский институт организации здравоохранения и медицинского менеджмента Департамента здравоохранения города Москвы, г. Москва, Россия

b71112@yandex.ru, https://orcid.org/0000-0001-5231-8000

Аннотация. Актуальность выполненного аналитического исследования была обусловлена тем, что с 2025 года в Российской Федерации активно реализуются национальные проекты «Продолжительная и активная жизнь» и ««Новые технологии сбережения здоровья», направленные как на профилактику и коррекцию факторов риска заболеваний населения страны, так и на разработку и внедрение медицинских инноваций. Для решения этих же ключевых задач предназначена медицинская эргономика, использующая свою методологию для изучения процессов, средств и условий деятельности в системе «медицинский работник — медицинское оборудование — пациент» как в целях предупреждения утомления, развития профессиональных заболеваний и сохранения здоровья медицинских специалистов, так и повышения качества оказания ими медицинской помощи населению. Поэтому с использованием международной базы данных по биомедицинским исследованиям «PubMed» на основе ключевых слов «медицинская эргономика» с соблюдением руководящих принципов PRISMA был выполнен анализ результатов реализации современных актуальных приоритетных направлений развития зарубежных медицинских исследований и технологий в области применения медицинской эргономики для улучшения процессов, средств и условий деятельности врачей различных медицинских специальностей.

Ключевые слова: медицинская эргономика; врачи; медицинская деятельность; обзор.

Для цитирования: Турзин П. С. Роль медицинской эргономики в улучшении деятельности медицинских работников и повышении качества оказания ими медицинской помощи населению за рубежом: обзор // Ремедиум. 2025. Т. 29, № 3. С. 314—320. doi:10.32687/1561-5936-2025-29-3-314-320

Review article

The role of medical ergonomics in improving the activities of medical professionals and improving the quality of their medical care to the population abroad: review

Petr Stepanovich Turzin

Research Institute for Healthcare Organization and Medical management of Moscow Healthcare Department, Moscow, Russia b71112@yandex.ru, https://orcid.org/0000-0001-5231-8000

Annotation. The relevance of the performed analytical study was due to the fact that since 2025, national projects «Long and active life» and «New Health saving technologies» have been actively implemented in the Russian Federation, aimed at both the prevention and correction of risk factors for diseases of the country's population, as well as the development and implementation of medical innovations. Medical ergonomics is designed to solve the same key tasks, using its methodology to study the processes, means and conditions of activity in the «medical worker — medical equipment — patient» system both in order to prevent fatigue, develop occupational diseases and preserve the health of medical professionals, and improve the quality of their medical care to the population. Therefore, using the international database on biomedical research PubMed, based on the keywords «medical ergonomics», in compliance with the PRISMA guidelines, an analysis of the results of the implementation of modern relevant priority areas for the development of foreign medical research and technologies in the field of medical ergonomics to improve the processes, facilities and working conditions of doctors of various medical specialties was carried out.

 $\label{eq:Keywords:medical ergonomics; doctors; medical activity; review.}$

For citation: Turzin P. S. The role of medical ergonomics in improving the activities of medical professionals and improving the quality of their medical care to the population abroad: review. Remedium. 2025;29(3):314–320. (In Russ.). doi:10.32687/1561-5936-2025-29-3-314-320

Введение

С 2025 года в Российской Федерации активно реализуются национальные проекты «Продолжительная и активная жизнь» и «Новые технологии сбережения здоровья» направленные как коррекцию

¹Правительство Российской Федерации. Национальный проект «Продолжительная и активная жизнь». Режим доступа: http://government.ru/rugovclassifier/917/about/ (дата обращения: 2.06.2025)

факторов риска заболеваний населения страны, так и на разработку и внедрение медицинских инноваций.

Для решения этих же задач предназначена медицинская эргономика, являющаяся одним из разде-

 $^{^2}$ Правительство Российской Федерации. Национальный проект «Новые технологии сбережения здоровья». Режим доступа: http://government.ru/rugovclassifier/926/about/ (дата обращения: 2.06.2025)

лов эргономики и использующая свою методологию для изучения процессов, средств и условий деятельности в системе «медицинский работник — медицинское оборудование — пациент» как в целях предупреждения утомления, развития профессиональных заболеваний и сохранения здоровья медицинских специалистов, так и повышения качества оказания ими медицинской помощи [1—6].

Медицинская эргономика сформировалась на стыке таких дисциплин, как анатомия, физиология, гигиена, психология, биомеханика, антропометрия, физика и других. Основная миссия медицинской эргономики — повышение эффективности труда медицинских работников и сохранение их здоровья. Ее задачи включают разработку и совершенствование как процессов деятельности медицинских работников при выполнении медицинских манипуляций и процедур, так и медицинского оборудования и инструментария, а также оптимизацию условий на их рабочих местах. В связи с этим целью данного аналитического исследования было изучить современную ситуацию с последними достижениями в области медицинской эргономики за рубежом.

Материалы и методы

Был осуществлен поиск в международной базе данных по биомедицинским исследованиям «Pub-Med» на основе ключевых слов «медицинская эргономика». При этом был применен фильтр: за последний год. Поисковой системой «PubMed» было предложено 653 систематических обзоров, метаанализов и статей и других материалов, в содержании которых были использовано искомое поисковое словосочетание. Из этого массива данных с соблюдением руководящих принципов PRISMA (Предпочтительные элементы отчетности для систематических обзоров и метаанализов) было отобрано 22 публикации из 12 стран, как наиболее репрезентативные и содержащие наиболее актуальные сведения по современным направлениям развития медицинской эргономики. Как оказалось, набольшее внимание изучению данной проблемы за рубежом за последний год уделяли ученые из США, Индии и Австралии. Необходимо подчеркнуть, что значительная часть исследований была выполнена международными коллективами ученых.

Результаты и обсуждение

Врачи-хирурги

Наибольшее внимание за последний год зарубежные исследователи уделили изучению применения медицинской эргономики для улучшения процессов, средств и условий деятельности врачей-хирургов. Причем больше всего исследований было посвящено рассмотрению роли медицинской эргономики в развитии роботизированной хирургии. Так, австралийские ученые, изучив эргономические вмешательства для уменьшения боли в опорно-двигательном аппарате (ОДА), прежде всего верхних конечностей, хирургов во время использования ими роботизированных хирургических систем, опреде-

лили, что использование компрессионных рукавов предплечья, растяжка и массаж могут помочь уменьшить им усталость предплечья. Также было показано, что микроперерывы с целевой растяжкой, активная эргономическая тренировка, улучшенное использование подлокотника и оптимальная конструкция контроллера руки уменьшают мышечноскелетную боль в верхних конечностях [7].

Наряду с этим американские ученые рассмотрели эргономику бариатрической хирургии, сравнив лапароскопию и роботизированную бариатрическую хирургию. Это исследование позволило выявить низкий уровень эргономического стресса (физической и умственной нагрузки) у хирургов, выполняющих бариатрическую хирургию роботизированным способом, по сравнению со средним уровнем риска эргономического стресса при использовании лапароскопического способа [8].

Американские и китайские ученые выполнили оценку мышечной боли и эргономики среди хирургов, применяющих роботизированные хирургические системы в Китае. Отмечается, что роботизированная хирургия преобразила минимально инвазивные процедуры, повышая их точность и эффективность. Однако эргономические аспекты роботизированных консолей и их влияние на здоровье хирурга оставались недостаточно изученными. Результаты выполненного исследования показали, что большинство хирургов испытывали боль в плече и шее, при этом мнения о том, была ли роботизированная хирургия основной причиной, разделились. Хирурги считали, что объем клинического случая и продолжительность операции способствовали дискомфорту. Для облегчения боли хирурги обычно использовали упражнения на растяжку [9].

Ученые из Великобритании определили, что роботизированная хирургия с использованием системы с открытой консолью Versius® снижала показатели эргономического риска и когнитивное напряжение во время резекции толстой кишки без видимого ущерба для командной коммуникации. Это может быть осуществимым решением растущей проблемы профессиональных травм ОДА у хирургов [10].

Международный коллектив исследователей из Германии, США и Польши выполнил эргономичные измерения в Кельне для роботизированной хирургии. Это первое исследование, в котором анализировалась и объективизировалась эргономическая поза студентов-медиков, хирургов-стажеров, хирургов и неспециалистов с использованием открытой консоли, модульной системы Hugo™ RAS. В результате ученые предложили рекомендации для оперирующих хирургов по проведению ими сравнительного анализа между различными роботизированными системами [11].

Второе направление исследований было посвящено изучению роли медицинской эргономики в профилактике заболеваемости хирургов. Так, международный коллектив исследователей из Австралии, Сингапура и Новой Зеландии изучил распространенность и характеристики связанных с работой заболеваний ОДА у хирургов, занимающихся

эндоскопической хирургией околоносовых пазух и основания черепа. Было выявлено, что наиболее часто поражаемыми областями ОДА у хирургов были шея, поясничный и грудной отделы позвоночника [12].

Американские ученые рассмотрели безопасность и эргономическую оптимизацию для кардиоторакальных хирургов. Отмечается, что кардиоторакальная хирургия, сложная по своей сути, часто приводит к тому, что хирурги страдают от травм ОДА, вызывающих хроническую боль и приводящих к преждевременному выходу на пенсию. Большинство хирургов сообщало о боли, усугубленной малоинвазивными методами, такими как видеоассистированная торакоскопическая хирургия. Однако, многие хирурги откладывают обращение за медицинской помощью. Для снижения этих рисков решающее значение имеют профилактические стратегии: силовые упражнения, растяжка во время операций и короткие перерывы. Однако хирургическое сообщество сталкивается с нехваткой институциональной поддержки и эргономического образования |13|.

Также американские ученые рассмотрели межпрофессиональный подход к оценке боли в ОДА и эргономики у ординаторов-хирургов, которые сообщили о боли, связанной с операцией, чаще всего в шее (75 %), плече (61 %) и стопе (53 %). Менее 11 % ординаторов сообщили об эргономических перерывах, предписанных преподавателями. Таким образом это исследование показало, что симптомы заболеваний ОДА и интраоперационные эргономические дисфункции распространены среди ординаторов общей хирургии, без необходимых мер для их профилактики. Эта оценка потребностей будет использована для создания инициативы по эргономике для ординаторов-хирургов [14].

В то же время американские ученые представили эргономические соображения для уникальных групп хирургов, включая хирургов с маленькими руками, беременных женщин хирургов и стажеров. Хирурги с маленькими руками и женщины сообщали о большем количестве жалоб на ОДА по сравнению с их коллегами-мужчинами. Беременные женщины хирурги часто сообщали о развитии или ухудшении заболеваний ОДА, таких как синдром запястного канала и боли в пояснице. Стажеры также сообщали о высоких показателях жалоб на ОДА. Существуют ограниченные объективные данные относительно идеальных инструментов, доступных в настоящее время для особых групп хирургов. Предложены режимы упражнений, нацеленные на верхние конечности и болевые синдромы, связанные с беременностью. Рекомендованы методы эргономического обучения для стажеров в целях улучшения их осанки и повышения производительности в операционной [15].

Наряду с этим американские ученые рассмотрели эргономику в хирургии позвоночника. Было выявлено, что большинство обследованных хирургов, оперирующих позвоночник, сообщили о мышечноскелетном дискомфорте, чаще всего представленном в виде боли в спине и шее и дискомфорта в руке/запястье. Эти симптомы часто усугублялись использованием луп, высотой операционной кровати и длительными периодами времени в различных положениях. Исследования показали, что физический дискомфорт хирургов был также связан с их психическим и эмоциональным благополучием, что приводило к их стрессу, выгоранию и снижению удовлетворенности работой [16].

Кроме этого, американские ученые выполнили клиническую оценку эргономики в пластической и реконструктивной хирургии лица. Было определено, что чаще всего дискомфорт отмечался в области шеи, плеч и верхней части спины. Симптомы устранялись самостоятельно путем изменения положения тела, ношения специальной обуви, регулировки высоты стула или смотрового стола или игнорирования дискомфорта [17].

Также американские ученые изучили высокую распространенность профессиональных заболеваний ОДА и доказательную эргономику в ортопедической хирургии. Оказалось, что распространенность профессиональных заболеваний ОДА у хирургов-ортопедов составила от 37% до 97%. По анатомическому расположению распространенность профессиональных заболеваний ОДА в области головы и шеи составила от 4% до 74%; спины — от 9% до 77%; предплечья, запястья и кисти — от 12% до 54%; локтя — от 3% до 28%; плеча — от 3% до 34%; бедра и бедра — от 1% до 10%; колена и голени — от 1% до 31%; стопы и лодыжки — от 4% до 25%. Из числа хирургов-ортопедов, сообщивших о профессиональных заболеваниях ОДА, от 9% до 33% имели отпуск, ограничение или изменение практики или досрочный выход на пенсию, а от 27% до 83% получили какую-либо форму лечения. Хирурги-ортопеды испытывали биомеханический, сердечно-сосудистый, нейромышечный и метаболический стресс во время процедур. Эргономические вмешательства были ограниченными, но включали роботизированную помощь, надлежащие средства визуализации, необходимое использование электроинструментов и безопасную минимизацию использования свинцового фартука. При эндопротезировании тазобедренного и коленного суставов роботизированная помощь была наиболее эффективной для улучшения осанки и снижения расхода калорий. В хирургии позвоночника надлежащее использование хирургических луп было наиболее эффективным для улучшения осанки. Ученые рекомендуют, чтобы программы ординатуры по ортопедии включали лекции по хирургической эргономике или производственной травме, семинары и обзор учебных фильмов. Ученые призывают медицинские учреждения оценивать эргономику хирургов во время рутинной оценки качества новых хирургических инструментов и рабочих процессов [18].

В то же время американские ученые рассмотрели роль эргономики для хирургов. Распространенными были связанные с работой заболевания ОДА, их распространенность варьировала от 47,5 % до 97 %. Наиболее часто сообщаемые симптомы возникали в

области шеи, плеч и поясницы. Факторы риска включали годы практики, плохую осанку и отсутствие эргономической подготовки. Рекомендации ученых включали использование инструментов визуализации (например, видеоскопов, призматических очков), эргономичных устройств, роботизированной хирургии и систем обратной связи по осанке. Эргономическая подготовка и учебные программы были выделены как необходимые для раннего вмешательства и долгосрочной профилактики. Внедрение эргономических принципов и стратегий и их интеграция в клиническую практику может значительно улучшить благополучие хирургов, сократить у них нарушения ОДА и обеспечить продолжительность их карьеры в различных клинических условиях [19].

Итальянские ученые рассмотрели роль эргономики в операционной и хирургической подготовке. Отмечается, что хирургические травмы случаются часто, фактически зарегистрированное количество заболеваний ОДА у хирургов составило от 47% до 87%. Эти состояния были вызваны длительными периодами стояния, неправильными позами, повторяющимися движениями, малым отдыхом между операциями, отсутствием интегрированных операционных, недостаточным количеством и неправильным расположением мониторов и использованием неэргономичных инструментов. Эти неудобства заставляли 43,9% хирургов делать перерыв или короткие упражнения, чтобы уменьшить боль во время операции, а наиболее затронутыми частями тела являлись спина (61,6%), шея (40,6%) и плечи (37,8%)

Третьим важным направлением исследований было изучение роли медицинской эргономики в профилактике утомления хирургов. Так, американские ученые изучили влияние эргономики на мышечную усталость во время хирургического сверления с использованием поверхностной электромиографии. Оказалось, что внешняя лучевая мышца запястья и верхняя трапециевидная мышца испытывали усталость почти в половине случаев независимо от положения тела хирургов. Верхняя трапециевидная мышца демонстрировала усталость в 46% и 69% «вытянутой» и «сутулистой» позиции соответственно по сравнению с всего лишь 31% «нейтральных» испытаний. Меньшее количество врачей демонстрировало усталость верхней трапециевидной мышцы по сравнению со стажерами (33% против 62%). Женщины-хирурги чаще испытывали усталость, чем их коллеги-мужчины (73% против 25%). Это исследование показало первый шаг в количественной оценке связи между рабочими позами и мышечной усталостью. Результаты показали, что определенные группы мышц более восприимчивы к усталости; пол и опыт также могут влиять на мышечную активность [21].

Международный коллектив исследователей из Пакистана, Великобритании и Индии рассмотрел снижение утомляемости хирурга за счет эргономики при лапароскопических операциях. Лапароскопия, несмотря на улучшение результатов хирургиче-

ского вмешательства, представляет эргономические проблемы, такие как диссоциация зрительно-моторной оси и повышенная когнитивная нагрузка, что приводит к снижению эффективности и усталости. Эргономика, оптимизирующая задачи и среду в соответствии с возможностями человека, может решить эти проблемы путем разработки удобных для пользователя инструментов, улучшения позиционирования хирурга, а также обстановки в операционной. Эти эргономические вмешательства сокращают время наложения швов, снимают дискомфорт и уменьшают нарушения ОДА у хирургов. Эргономическое обучение хирургов минимизирует факторы риска и способствует улучшению механики тела. Приоритет эргономики в хирургической среде может привести к улучшению результатов для пациентов, повышению благополучия хирурга и его удовлетворенности работой [22].

Врачи других специальностей

Американские ученые изучили роль эргономики при выполнении дерматологических лазерных процедур. Отмечается, что из-за работы в статических положениях и использования повторяющихся движений в течение длительного времени дерматологи подвергаются повышенному риску профессиональных травм ОДА. Поэтому было предложено улучшить лазерное оборудование с помощью легких консолей и ручек, длинных многошарнирных элементов устройств и легких лазерных очков с регулируемыми головными ремнями. Таким образом, используя эргономичную стратегию позиционирования, возможно снизить риск травм ОДА у этих специалистов [23].

Наряду с этим американские ученые рассмотрели роль эргономики при выполнении врачами дерматологических процедур. Выявлено, что дерматологи, особенно дерматологические хирурги, часто испытывают боли в шее, плечах и спине из-за длительных статических положений и повторяющихся движений. Травмы ОДА могут не только повлиять на продолжительность карьеры и удовлетворенность дерматологов, но и на качество их ухода за пациентами. Ученые выделили приемы и упражнения, которые дерматологические хирурги могут использовать как в процедурном кабинете, так и за его пределами, чтобы уменьшить боль и предотвратить будущие травмы [24].

Индийские ученые рассмотрели эргономику в ЛОР-практике. Оказалось, что нарушения ОДА являются одной из самых распространенных проблем профессионального здоровья хирургов-оториноларингологов. Хотя эргономика применима к каждому хирургу/медицинскому работнику, в этом исследовании ученые конкретно обсуждали важность понимания и использования эргономики для оптимизации деятельности хирургов-отоларингологов [25].

Кроме этого индийские ученые рассмотрели проблемы охраны труда и эргономики в рентгенологии. Оказалось, что профессиональные заболевания ОДА были зарегистрированы у 85% рентгенологов, при этом наиболее затронутыми областями были

шея (73%) и поясница (67%). Распространенность выгорания включала эмоциональное истощение у 29,8%. Хроническая усталость и нарушения сна были тесно связаны с продолжительными сменами и плохой эргономикой рабочих мест. Защитные факторы включали профессиональное признание и эргономические вмешательства на рабочем месте. Решение этих проблем посредством улучшения эргономики рабочего места, управления стрессом и рабочей нагрузкой является обязательным условием для улучшения качества их жизни и производительности труда. Реализация эргономического обучения, содействие профессиональному признанию и снижение рабочей нагрузки имеют решающее значение для устойчивой практики рентгенологов [26].

Также ученые из Индии и Австралии рассмотрели эргономическую эндокринологию. Они разработали концепцию эргономической эндокринологии, согласно которой она определяется как двунаправленная и многогранная связь между эндокринным здоровьем и дисфункцией, с одной стороны, и эргономическим дизайном и проектированием, с другой. Ученые описали различные области эргономической эндокринологии, используя рубрику классификации физической, когнитивной и организационной эргономики. Они выделили способы, которыми эндокринология может способствовать улучшению эргономики [27].

Японские ученые рассмотрели эргономичную эндоскопию — основы эргономики и необходимые вмешательства для профилактики заболеваний ОДА у врачей-эндоскопистов. Эти заболевания вызываются длительными статическими позами, сильными ручными усилиями и повторяющимися скручивающими движениями. Базовые знания эргономики полезны для улучшения осанки, движений и рабочей среды врачей-эндоскопистов, а также для разработки и оптимизации оборудования для предотвращения возникновения у них этих заболеваний [28].

Заключение

Медицинская эргономика применяет свою методологию для изучения процессов, средств и условий деятельности в системе «медицинский работник медицинское оборудование — пациент» как в целях предупреждения утомления, развития профессиональных заболеваний и сохранения здоровья медицинских специалистов, так и повышения качества оказания ими медицинских услуг. В связи с этим была рассмотрена современная ситуация с последними достижениями в области медицинской эргономики за рубежом.

Для этого был выполнен целенаправленный поиск в поисковой системе по биомедицинским исследованиям «PubMed» с использованием ключевых слов «медицинская эргономика». При этом был применен фильтр: за последний год. Поисковой системой «PubMed» было предложено 653 систематических обзоров, метаанализов и статей и других материалов, в содержании которых были использованы искомые словосочетания. Окончательно были изучены 22 публикации из 12 стран, как содержащие наиболее актуальные сведения по современным направлениям развития медицинской эргономики. Как оказалось, набольшее внимание изучению данной проблемы за рубежом за последний год уделяли ученые из США, Индии и Австралии. Необходимо подчеркнуть, что значительная часть исследований была выполнена международными коллективами ученых.

В итоге был представлен анализ результатов реализации современных приоритетных направлений развития зарубежных исследований в области применения медицинской эргономики для улучшения процессов, средств и условий деятельности врачейхирургов и ряда врачей других медицинских специальностей.

ЛИТЕРАТУРА

- 1. Аксенова Е. И., Горбатов С. Ю., Пивоварова О. А. Определение уровня технологической готовности разработок в медицине на основе методологии TRL. Проблемы социальной гигиены, здравоохранения и истории медицины. 2021;29(S2):1395—1399. DOI: 10.32687/0869-866X-2021-29-s2-1395-1399
- 2. Аксенова Е. И., Бобкова Т. В., Вешкурова А. Б., Лукьянова Р. Р., Шапиро С. А. Влияние синдрома эмоционального выгорания на эффективность труда врачей-стоматологов. Проблемы социальной гигиены, здравоохранения и истории медицины. 2021;29(5):1144—1151. DOI: 10.32687/0869-866X-2021-29-5-1144-1151
- 3. Арутюнов А. Т., Городецкий И. Г., Найченко М. В., Турзин П. С., Ушаков И. Б. Медицинская эргономика. М.: МАТИ Российский государственный технологический университет им. К. Э. Циолковского; 2006, 270 с.
- 4. Городецкий, И.Г., Турзин П. С., Найченко М. В. Эргономические основы создания человеко-машинных систем. М.: Российский государственный технологический университет им. К. Э. Циолковского; 2001, 567 с.
- 5. Ушаков И. Б., Найченко М. В., Турзин П. С., Попов В. И. Основы военно-медицинской эргономики. Воронеж: Воронежский государственный университет; 2001, 168 с.
- 6. Широкова Н. В. Что такое медицинская эргономика и какова ее роль в сохранении здоровья. *Медицинская сестра*. 2009;(5):33—36.
- Wong S. W., Parkes A., Crowe P. Ergonomic interventions to reduce upper limb musculoskeletal pain during robotic surgery: a narrative review. *J Robot Surg.* 2024;18(1):224. DOI: 10.1007/s11701-024-01992-w
- 8. Hilt L., Sherman B., Tan W. H., Lak K., Gould J. C., et al. Bariatric Surgeon Ergonomics: A Comparison of Laparoscopy and Robotics. *J Surg Res.* 2024;295:864—873. DOI: 10.1016/j.jss.2023.08.045
- Saikali S., Patel E., Mascarenhas A., Jaber A., Gamal A., Moschovas M. C., et al. Assessing Muscular Pain and Ergonomics Among Robotic Surgeons in China: A Validation. Surg Innov. 2024;31(4):435—442. DOI: 10.1177/15533506241255766
- Dixon F., Vitish-Sharma P., Khanna A., Keeler B.D; VOLCANO Trial Group. Robotic assisted surgery reduces ergonomic risk during minimally invasive colorectal resection: the VOLCANO randomised controlled trial. *Langenbecks Arch Surg.* 2024;409(1):142. DOI: 10.1007/s00423-024-03322-y
- 11. Brunner S., Müller D., Krauss D. T., Datta R. R., Eckhoff J. A., Storms C., et al. Cologne ergonomic measurement for robotic surgery (CEMRobSurg) using the Hugo™ RAS System. *Surg Endosc.* 2024;38(10):6128—6138. DOI: 10.1007/s00464-024-11129-7

- 12. Campbell R. G., Zadro J. R., Gamble A. R., Chan C. L., Mackey M. G., Osie G., et al. Work-Related Musculoskeletal Disorders in Endoscopic Sinus and Skull Base Surgery: A Systematic Review With Meta-analysis. Otolaryngol Head Neck Surg. 2024;171(6):1650—1669. DOI: 10.1002/ohn.892
- Venkateswaran S., Wang D., Potter A. L., Jeffrey Yang C. F. Safety and Optimizing Ergonomics for Cardiothoracic Surgeons. *Thorac* Surg Clin. 2024;34(3):197—205. DOI: 10.1016/j.thorsurg.2024.04.007
- 14. Haider A., Hanif H., Dyche T. M., Monagle N. V., Patterson A., Eberle L., et al. An Interprofessional Approach to Assessing Musculoskeletal Pain and Ergonomics in Surgery Residents. *J Surg Res.* 2024;303:513—518. DOI: 10.1016/j.jss.2024.09.069
- Olig E., Ranieri G., Louie M. Ergonomic considerations for unique surgeon populations. *Curr Opin Obstet Gynecol.* 2024;36(4):260— 265. DOI: 10.1097/GCO.000000000000068
- Alostaz M., Bansal A., Gyawali P., Louie P. K. Ergonomics in Spine Surgery: A Systematic Review. Spine (Phila Pa 1976). 2024;49(16):E250-E261. DOI: 10.1097/BRS.00000000000005055
- 17. Garg N., Xu V., Mandloi S., Kumar A., Chandna M., Tekumalla S., et al. Ergonomics in Facial Plastic and Reconstructive Surgery: A Clinical Evaluation. *Laryngoscope*. 2025;135(4):1379—1385. DOI: 10.1002/lary.31858
- Vasireddi N., Vasireddi N., Shah A. K., Moyal A. J., Gausden E. B., Mclawhorn A. S., et al. High Prevalence of Work-related Musculoskeletal Disorders and Limited Evidence-based Ergonomics in Orthopaedic Surgery: A Systematic Review. *Clin Orthop Relat Res.* 2024;482(4):659—671. DOI: 10.1097/CORR.0000000000002904
- Garcia J. A., Najjar W., Andari D., Assaf R. K., Annan B., Johnson A., et al. Ergonomics for Cleft Providers: A Systematic Review.
 Ann Plast Surg. 2025;94(5):612—622. DOI: 10.1097/ SAP.00000000000004346
- 20. Restaino S., D'Indinosante M., Perelli F., Arcieri M., Cherchi V., Petrillo M., et al. Ergonomics in the operating room and surgical training: a survey on the Italian scenario. *Front Public Health*. 2024;12:1417250. DOI: 10.3389/fpubh.2024.1417250
- 21. Joo H. H., Formeister E., Pozin M., Fatollahkhani P. A., Carey J., et al. Impact of Ergonomics on Muscle Fatigue During Surgical Drilling Using Surface Electromyography. *Otolaryngol Head Neck Surg.* 2024;171(1):205—211. DOI: 10.1002/ohn.687
- Kumar H., Dhali A., Biswas J., Dhali G. K. Reducing Surgeon Fatigue Through Ergonomics: Importance and Benefits in Laparoscopic Surgeries. *Cureus*. 2024;16(7):e65530. DOI: 10.7759/cureus.65530
- 23. Yale K., Cox S., Grushchak S., Lee P. K., Kelly K. M. Ergonomics in Dermatologic Laser Procedures. *J Clin Aesthet Dermatol*. 2024;17(8):41—43.
- 24. Lauck K. C., Nguyen K., Parnell R., Truong V. Ergonomics in Dermatologic Procedures: Mobility Exercises to Incorporate In and Out of the Office. *Cutis.* 2025;115(2):61—62. DOI: 10.12788/cutis.1164
- 25. Tandon S., Wadhwa V., Rathore P. K. Ergonomics in ENT Practice. Indian J Otolaryngol Head Neck Surg. 2024;76(5):4891—4896. DOI: 10.1007/s12070-024-04861-y
- Shettigar D., Sukumar S., Pradhan A., Dkhar W., Paramashiva P. S., et al. Occupational health challenges in radiography: A comprehensive systematic review and meta-analytic approach. *Radiography* (Lond). 2025;31(3):102955. DOI: 10.1016/j.radi.2025.102955
- Kalra S., Dhingra A., Kapoor N. Ergonomic endocrinology. J Pak Med Assoc. 2024;74(12):2191—2193. DOI: 10.47391/JPMA.24— 98
- Matsuzaki I., Ebara T., Hori Y., Ono S., Nakai Y., Hayashi K., et al. Ergonomic endoscopy — Fundamentals of ergonomics and interventions for endoscopy-related musculoskeletal disorders. *Dig Endosc*. 2025;37(6):588—600. DOI: 10.1111/den.14999

REFERENCES

- Aksenova E. I., Gorbatov S.Sh., Pivovarova O. A. Introduction of development technology in medicine at the present stage. *Problemy social'noj gigieny, zdravoohranenija i istorii mediciny*. 2021;29(S2):1395—1399. DOI: 10.32687/0869-866X-2021-29- s2-1395-1399 (In Russ.).
- Aksenova E. I., Bobkova T. V., Veshkurova A. B., Lukyanova R. R., Shapiro S. A. The effect of burnout syndrome on the work efficiency of dentists. *Problemy social'noj gigieny, zdravoohranenija i* istorii mediciny. 2021;29(5):1144—1151. DOI: 10.32687/0869-866X-2021-29-5-1144-1151 (In Russ.).
- 3. Arutyunov A. T., Gorodetsky I. G., Naychenko M. V., Turzin P. S., Ushakov I. B. Medical ergonomics. Moscow: MATI Russian State Technological University named after K. E. Tsiolkovsky; 2006, 270 p. (In Russ.).
- Gorodetsky, I.G., Turzin P. S., Naychenko M. V. Ergonomic principles of creating human-machine systems. Moscow: Russian State Technological University named after K. E. Tsiolkovsky; 2001, 567 p. (In Russ.).
- Ushakov I. B., Naychenko M. V., Turzin P. S., Popov V. I. Fundamentals of military medical ergonomics. Voronezh: Voronezh State University; 2001, 168 p. (In Russ.).
- Shirokova N. V. What is medical ergonomics and what is its role in maintaining health. *Medicinskaja sestra*. 2009;(5):33—36. (In Russ.).
- 7. Wong S. W., Parkes A., Crowe P. Ergonomic interventions to reduce upper limb musculoskeletal pain during robotic surgery: a narrative review. *J Robot Surg.* 2024;18(1):224. DOI: 10.1007/s11701-024-01992-w
- Hilt L., Sherman B., Tan W. H., Lak K., Gould J. C., et al. Bariatric Surgeon Ergonomics: A Comparison of Laparoscopy and Robotics. *J Surg Res*. 2024;295:864—873. DOI: 10.1016/j.jss.2023.08.045
- 9. Saikali S., Patel E., Mascarenhas A., Jaber A., Gamal A., Moschovas M. C., et al. Assessing Muscular Pain and Ergonomics Among Robotic Surgeons in China: A Validation. *Surg Innov.* 2024;31(4):435—442. DOI: 10.1177/15533506241255766
- Dixon F., Vitish-Sharma P., Khanna A., Keeler B.D; VOLCANO Trial Group. Robotic assisted surgery reduces ergonomic risk during minimally invasive colorectal resection: the VOLCANO randomised controlled trial. *Langenbecks Arch Surg*. 2024;409(1):142. DOI: 10.1007/s00423-024-03322-y
- 11. Brunner S., Müller D., Krauss D. T., Datta R. R., Eckhoff J. A., Storms C., et al. Cologne ergonomic measurement for robotic surgery (CEMRobSurg) using the Hugo™ RAS System. *Surg Endosc*. 2024;38(10):6128—6138. DOI: 10.1007/s00464-024-11129-7
- Campbell R. G., Zadro J. R., Gamble A. R., Chan C. L., Mackey M. G., Osie G., et al. Work-Related Musculoskeletal Disorders in Endoscopic Sinus and Skull Base Surgery: A Systematic Review With Meta-analysis. *Otolaryngol Head Neck Surg.* 2024;171(6):1650— 1669. DOI: 10.1002/ohn.892
- Venkateswaran S., Wang D., Potter A. L., Jeffrey Yang C. F. Safety and Optimizing Ergonomics for Cardiothoracic Surgeons. *Thorac Surg Clin*. 2024;34(3):197—205. DOI: 10.1016/j.thorsurg.2024.04.007
- 14. Haider A., Hanif H., Dyche T. M., Monagle N. V., Patterson A., Eberle L., et al. An Interprofessional Approach to Assessing Musculoskeletal Pain and Ergonomics in Surgery Residents. *J Surg Res.* 2024;303:513—518. DOI: 10.1016/j.jss.2024.09.069
- 15. Olig E., Ranieri G., Louie M. Ergonomic considerations for unique surgeon populations. *Curr Opin Obstet Gynecol*. 2024;36(4):260—265. DOI: 10.1097/GCO.0000000000000968
- Alostaz M., Bansal A., Gyawali P., Louie P. K. Ergonomics in Spine Surgery: A Systematic Review. Spine (Phila Pa 1976). 2024;49(16):E250-E261. DOI: 10.1097/BRS.00000000000005055

- Garg N., Xu V., Mandloi S., Kumar A., Chandna M., Tekumalla S., et al. Ergonomics in Facial Plastic and Reconstructive Surgery: A Clinical Evaluation. *Laryngoscope*. 2025;135(4):1379—1385. DOI: 10.1002/lary.31858
- Vasireddi N., Vasireddi N., Shah A. K., Moyal A. J., Gausden E. B., Mclawhorn A. S., et al. High Prevalence of Work-related Musculoskeletal Disorders and Limited Evidence-based Ergonomics in Orthopaedic Surgery: A Systematic Review. *Clin Orthop Relat Res*. 2024;482(4):659—671. DOI: 10.1097/CORR.0000000000002904
- Garcia J. A., Najjar W., Andari D., Assaf R. K., Annan B., Johnson A., et al. Ergonomics for Cleft Providers: A Systematic Review. *Ann Plast Surg.* 2025;94(5):612—622. DOI: 10.1097/ SAP.00000000000004346
- 20. Restaino S., D'Indinosante M., Perelli F., Arcieri M., Cherchi V., Petrillo M., et al. Ergonomics in the operating room and surgical training: a survey on the Italian scenario. *Front Public Health*. 2024;12:1417250. DOI: 10.3389/fpubh.2024.1417250
- Joo H. H., Formeister E., Pozin M., Fatollahkhani P. A., Carey J., et al. Impact of Ergonomics on Muscle Fatigue During Surgical Drilling Using Surface Electromyography. *Otolaryngol Head Neck Surg*. 2024;171(1):205—211. DOI: 10.1002/ohn.687
- 22. Kumar H., Dhali A., Biswas J., Dhali G. K. Reducing Surgeon Fatigue Through Ergonomics: Importance and Benefits in Laparo-

- scopic Surgeries. *Cureus*. 2024;16(7):e65530. DOI: 10.7759/
- 23. Yale K., Cox S., Grushchak S., Lee P. K., Kelly K. M. Ergonomics in Dermatologic Laser Procedures. *J Clin Aesthet Dermatol*. 2024;17(8):41—43.
- Lauck K. C., Nguyen K., Parnell R., Truong V. Ergonomics in Dermatologic Procedures: Mobility Exercises to Incorporate In and Out of the Office. *Cutis.* 2025;115(2):61—62. DOI: 10.12788/cutis.1164
- 25. Tandon S., Wadhwa V., Rathore P. K. Ergonomics in ENT Practice. Indian J Otolaryngol Head Neck Surg. 2024;76(5):4891—4896. DOI: 10.1007/s12070-024-04861-y
- Shettigar D., Sukumar S., Pradhan A., Dkhar W., Paramashiva P. S., et al. Occupational health challenges in radiography: A comprehensive systematic review and meta-analytic approach. *Radiog*raphy (Lond). 2025;31(3):102955. DOI: 10.1016/j.radi.2025.102955
- Kalra S., Dhingra A., Kapoor N. Ergonomic endocrinology. J Pak Med Assoc. 2024;74(12):2191—2193. DOI: 10.47391/JPMA.24—98
- Matsuzaki I., Ebara T., Hori Y., Ono S., Nakai Y., Hayashi K., et al. Ergonomic endoscopy Fundamentals of ergonomics and interventions for endoscopy-related musculoskeletal disorders. *Dig Endosc*. 2025;37(6):588—600. DOI: 10.1111/den.14999

Автор заявляет об отсутствии конфликта интересов.

The author declares no conflicts of interests.

Статья поступила в редакцию 27.02.2025; одобрена после рецензирования 18.04.2025; принята к публикации 13.08.2025. The article was submitted 27.02.2025; approved after reviewing 18.04.2025; accepted for publication 13.08.2025.

— 320 **—**